
hr. 1. Heat Mcrss Tnvufer. Vol. 10. pp. 150%1520. Pergamon Pres Ltd. 1967. Printed in Great Britain 

A GENERALIZED GALERKIN-KANTOROVICH 

TREATMENT OF TRANSIENT EVAPORATION THROUGH 

A FINITE REGION 

HOWARD E. BETHEL* 

Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 

(Received 5 November 1966 and in revisedform 1 May 1967) 

Akatract-This paper presents an approximate solution of transient evaporation through a finite region. 
A generalized Galerkin-Kantorovich method is employed to obtain the approximate solutions. Exactness 
and convergence properties of the approximate solutions are established by comparison with exact solutions 
for two special cases. The approximate solutions appear to be converging to the exact as the order of 
approximation is increased. Furthermore, accurate solutions are obtained for a computationally feasible 
order of approximation (the fifth). The physical aspects of the approximate solutions are presented and 

discussed. 
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NOMENCLATURE 

undetermined coefficients in ap- 
proximating function uN ; 
molar density of solution ; 
indices usually ranging over 1, 
2 N; , * * * , 
time ; 
nondimensionalized concentration 
of vapor, equation (5); 
approximating function for variable 
u(r, rj), equation (17) ; 
collocation points, equation (22) ; 
maximum value of U(Q, q) at a 
particular instant of time r0 ; 
coordinate normal to interface ; 
binary diffusivity for system A-B ; 
molar flux ; 

Greek symbols 
cto, 

4 

z, 

interface parameter, equation (7); 
nondimentionalized coordinate 
normal to interface, equation (5); 
nondimensionalized time, equation 

(5). 

that is, earliest time for which 
ai differ from ajs by less than 
10-6; 
nondimensionalized flux, 

WX,,cD,, ; 
mole fraction ; 
equilibrium gas-phase concentra- 
tion ; 
definite integral in system of integral 
conditions, equation (20). 

set of weighting functions ; 
reference distance ; Subscripts 
number of unknown coefficients in s, 
the approximating function u&, q) ; 
residual, equation (18) ; A, 
value of r at onset of steady state, II, 

* Captain, USAF and Research Engineer, Hypersonic Superscript 
Research Laboratory. -3 
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variable evaluated for the steady 
state ; 
variable evaluated for vapor 
variable evaluated for gas B. 

derivative with respect to r. 

A; 
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1. INTRODUCI’ION 

THE TRANSIENT evaporation of a liquid A 
through a semi-infinite region tilled with gas B 
was solved by Arnold [l] by a similarity 
transformation which reduced the governing 
partial differential equation to an ordinary 
differential equation. The problem considered 
in this paper is the transient evaporation of a 
liquid A through a finite region filled with gas B. 
Thus, in this problem the concentration of A 
is maintained as zero at some finite distance, 
L, above the surface of liquid A. For times 
t < 0, liquid A is not exposed to gas B. At the 

Y7 normal distance above liquid A ; 
4 time ; 
D A*, binary diffusivity for system A-B, 

taken as a constant; 
X ‘407 equilibrium gas-phase concentration. 

The boundary conditions are 

y=o X” = x,0 (2) 
y=L x, = 0 (3) 

and the initial condition is 

t=O x, = 0. (4) 

instant of time t = 0, the interface between 
liquid A and gas B is established. The concentra- 

It is convenient to rewrite the above problem 

tion of A at the interface y = 0 is then XAO, 
in terms of the nondimensional variables 

the equilibrium gas-phase concentration. The XA 
physical model is shown schematically in Fig. 1. 

uzAO, q=f and r=G. 
X C (5) 

Y The governing differential equation written in 

t 
nondimensional form is given by 

x,=0 at4 a34 au a~ 
;iT=~+ao~,=o~ I (6) 

where 

LUJID A 

X 
“0 = 1 _ TAO. (7) 

x4= x,4, The boundary conditions are 

FIG. 1. Transient evaporation across a finite region. 

The level of the liquid A is maintained at 
position y = 0 at all times. The entire system 
is maintained at a constant temperature and 
pressure. The vapor A and gas B are assumed to 
form an ideal gas mixture. It is further assumed 
that B is insoluble in A. The governing equation 
for this evaporation process under these assump- 
tions is as follows [2] : 

+ 
DAB ax, ~XA (1) 

- - 

1 - x,0 ay y=. a~ 

where 

X,3 mole fraction of vapor A; 

q=o u=l (8) 

q=l u=o (9) 

and the initial condition is 

z=o u = 0. (10) 

For the case a, = 0, equation (6) reduces to 
the diffusion equation and the resulting problem 
can be readily solved [3, 4-j. Also, the steady 
state solution of (6) can be obtained for all 
values of a,,. The purpose of this paper is to 
present approximate unsteady state solutions 
for nonzero values of a,. The solutions are 
obtained with a generalized Galerkin-Kan- 
torovich method which is outlined in the next 
section. 
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2. THE GENERALIZED 

GALERKIN-KANTOROVICH METHOD 

The generalized Galerkin-Kantorovich 
method can be briefly summarized as follows 
[S, 6, 71. Let the given partial differential 
equation be denoted in operator notation as 
F[w([, g)] = 0 with suitable boundary condi- 
tions on w([, 5). An approximate solution is 
taken in the form 

(11) 

where &,([, 5) satisfies the nonhomogeneous 
boundary conditions and the functions $A(, <) 
satisfy homogeneous boundary conditions for 
all values of the parameters u,(r). Further, the 
functions 4A[, {) are taken to be the first N 
members of a complete set of functions, thus, 
in the limit of large values of N, it is possible 
to find coefficients aj such that the approximat- 
ing function w&, 4) is equal to the function 
w(c, <). For finite values of N, F[w&, <)I = 
RN # 0 where R, is called the residual and in 
some sense reflects the degree of closeness of 
w, to w. 

A system of integral conditions for the 
determination of the coefficients Uj is generated 
by requiring that the residual be orthogonal 
to a set of weighting functions 

I 
” H,(l) RN dt = ” Hi(<) F[ti’N(i, O] dr = 0 (12) 
1 I 1 

i= 1,2 ,..., N. 

The weighting functions Hi(r) are taken as 
any set of linearly independent functions. The 
set of N linearly independent integral conditions 
represented by equation (12) will be ordinary 
differential equations for the ujr)‘s and will be 
nonlinear when the operator F[w([, r)] is 
nonlinear. 

3. FORMULATION OF THE APPROXIMATE 

SOLUTION 

In this section, an Nth order solution will be 

formulated in the spirit of the formulations of 
[S]. The approximating function of the form 
(11) for the dependent variable u(z, q) can be 
derived by writing 

a&, rl) = jtI b&) rl’- 1 (13) 

and requiring that this function satisfy the 
boundary conditions for all values of the his. 
Satisfaction of (8) gives 

b, = 1 (14) 

and satisfaction of (9) yields 

b, = - (1 + $J bj). 
j=3 

(15) 

Combining equations (14) and (15) with equation 
(13) gives 

aM(r, V) = 1 - v + j$3 bj[ - tl + tl’- ‘1. (16) 

The approximating function aM can now be 
rewritten in the form (11) by adjusting the 
upper limit of the summation so that it reflects 
the number of remaining unknown functions, 
M - 2, which will be called N. 

u&q) = 1 - rj + 5 aA,) [-r/ + #+I]. (17) j-1 
Equation (17) identically satisfies the boundary 
conditions (8) and (9) irrespective of the values 
of the ai’s. 

If the approximating function (17) is employed 
in the governing equation (6), the expression for 
the residual RN is found to be 

RN = j$lbil_s + ‘tj+‘] - jfl~,c + l)ti)~‘-’ 

+ a0C1 + ,tl ujl 

x [-l + j$Iaj{-l + o’+ l>rlj)l (18) 

where ti, = daj/dz. When the residual is sub- 
stituted into the orthogonality relation (12) 
and the set of weighting functions taken as 
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Hi(q) = vi- ‘, the system ofN integral conditions 
becomes 

j$l C;j[ - Y(i + 1) + Y(i + j + l)] 

= jfjl ajo + l)YG + i - 1) - t10 [l + $j aj] 
j=l 

* [- Y(i) + jil aj{ - Y(i) + 0’ + 1) Yg’ + i)}] 

(19) 
i = 1,2,...,N 

where 

Y(n) = ’ x”-’ dx = l/n. 
i! 

(20) 

This system of equations determines the N 
unknowns a,(r)j = 1,2,. . . , N. However, before 
this system of equations can be solved for the 
transient concentration profiles u&, q), initial 
values of the aj’s must be determined. 

Initial values of the aj’s are determined by 
requiring that the approximating function 
uN(r, q) satisfy the initial condition ~(0, q) = 0. 
In terms of the approximating function this 
condition requires that 

nN(O,tl)= 1 -V+ j~Ia,~O~[-~+sj+ll=O 

(21) 
where the aAO)‘s are the initial values of the ai’s. 
For a finite number of aAO)‘s it is not possible 
to identically satisfy equation (21). For example, 
in the first order of approximation there is 
available only one coefficient a,(O). However, 
from equation (21) one finds 

a,(O) = ’ 
-1 

(-rl + +) 

and since a,(O) is a constant it is only possible 
to satisfy (21) at a single point. Hence, the initial 
condition can only be satisfied in an approximate 
manner. The initial values of the coefficients 
can be determined by requiring that ~(0, q) 
be orthogonal to the weighting functions Hdq(tt) 

as was done with the residual. However, a 
collocation procedure was found to give more 
exact initial conditions. The scheme employed 
to generate the initial values of the coefficients 
is to require that equation (21) be satisfied at 
the points nk = k/(iV + l), k = 1,2,. . . , N. The 
resulting system of equations is given by 

j$l aJo) hk + vi”] = vk - l. (22) 

This system of N algebraic equations can be 
solved for the N values aX0). 

We now have all the elements necessary to 
obtain the approximate solution. The solution 
procedure is to specify a desired value of a0 
and N and then to first obtain the initial values 
of the aj’s from equation (22). With these initial 
conditions the system of ordinary differential 
equations (19) can be solved by any standard 
finite difference method (a variable-step Adams- 
Moulton scheme was employed in this study). 
Once the a,(z) values are known at some 
particular instant of time the concentration 
profiles can be recovered from the equation 
for u&, q), equation (17). 

The above formulation illustrates the coupled 
use of orthogonality and collocation methods. 
These methods are but two of a number of 
error distribution principles which can be used 
to obtain approximate solutions of differential 
equations [7]. The method of weighted residuals 
encompasses and unifies consideration of the 
above methods. Crandall [9] originated this 
unifying concept and a comprehensive review 
of it is given by Finlayson and Striven [lo]. 

4. EXACTNESS AND CONVERGENCE 

The convergence of the generalized Galerkin- 
Kantorovich method when applied to the 
transient evaporation problem would be antici- 
pated since the completeness of the set of 
functions ~j can be inferred from the Weier- 
strass Approximation Theorem. The Weierstrass 
Approximation Theorem states : 

If the function V(X, y), au/ax and au/ay are 
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continuous in a closed and bounded region D, 
then for any E > 0 there exists a polynomial 
p(x, y) such that in D, L, - p < c, (&I/&X) - 
(+/dx) < E and (&/a~) - (+/8y) < E [ 111. 

From the statement of the problem, equations 
(6) through (lo), it is clear that for r > 0 the 
dependent variable u and its derivative at& 
are continuous in the closed and bounded 
region 0 < v < 1. Thus, the dependence of u 
upon q can be approximated to any desired 
degree of accuracy by a sum of polynomials in 
II. That is, the approximating function is 
mathematically complete and it is possible to 
find coefficients bj such that 

The author is not aware of a general proof of 
the convergence of the generalized Galerkin- 
Kantorovich method which would apply to 
this problem. Consequently, the convergence 
and exactness properties of the approximate 
solutions can only be inferred by comparing 
these results with available exact solutions. 

For the transient evaporation problem there 
are two special cases for which exact solutions 
exist. The first, and most useful, is for a0 = 0. 
In this case, equation (6) reduces to the diffusion 
equation and the exact solution has been 
obtained by classical techniques [3, 41. The 
exact solution is given by 

u(r, ?) = 1 - rl 

2 m 1 -- 
a c 

n sin (nxq) exp (- n2a22) (23) 
n=l 

and can be evaluated to any desired degree of 
accuracy. The second case is the steady state. 
For the steady state au/& = 0 and equation 
(6) reduces to an ordinary differential equation 
which can be exactly integrated for all values 
of a0 

a0 = 0 %(rl) = 1 - tl 
(24) 

a0 # 0 t&l) = I - -$ 

x (exp {[In (a0 + 1)ld - 0 

The degree to which the approximating function 
satisfies the initial conditions also affects the 
exactness of the approximate solutions. 

To establish the convergence and exactness 
properties of the approximate solutions, we will 
lirst consider the limiting conditions, that is, 
the initial conditions and steady state solutions. 
The initial conditions are obtained from equa- 
tion (22) and for a particular order of approxima- 
tion are the same for all values of ao. The 
initial conditions for the first eight orders of 
approximation are presented in Fig. 2. The 

I.0 

0.6 

0.4 

0.2 

0 

-0.2 1 1 I I ’ ’ ’ ’ ’ ’ 
0 0.2 0.4 0.6 06 I.0 

NORMAL DISTANCE, (I 

FIG. 2. Initial concentration profiles. 

approximate initial conditions tend uniformly 
toward the exact initial condition withincreasing 
N. However, the initial conditions are con- 
siderably in error for small values of q due to 
the nature of the initial condition, ~(0, q) = 0, 
and boundary condition at v = 0, u(z, 0) = 1. 
This error is rapidly diminished as the solution 
proceeds in time as shall be seen subsequently. 
The steady state solutions of the generalized 
Gale&in-Kantorovich method are obtained 
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Table 1. Steady state solutionsfor u,, = 1.0 

rl 

Nondimensional concentration, udr,, 9) 

Order of approximation, N 

0 1.0 1.0 1Q 1.0 
O-0500 0.96583 096475 0.96473 0.96474 
0~1000 @93ooo 0.92832 092822 0.92823 
@1500 @a9250 0~89063 @89042 0.89043 
0.2000 0.85333 @a5162 0.85129 0.85130 
0.2500 @a1250 0.81125 @a1077 0.81079 
0.3000 0.77000 0.76944 0.76884 0.76886 
0.3500 0.72583 0.72614 072542 O-72544 
O4oOO @68ooO 0.68128 068048 0.68049 
0.4500 0.63250 W63481 0.63395 0.633% 
0.5000 0.58333 0.58667 Q58578 058579 
0.5500 0.53250 0.53680 0.53592 0.53591 
06000 04aalO 0.48513 O-48429 0.48428 
0.6500 Q42583 0.43160 0.43084 0.43083 
Q7000 037000 0.37617 037551 0.37550 
0.7500 0.31250 0.31876 031822 0.31821 
0.8000 0.25333 0.25932 C-25891 0.25890 
0.8500 019250 0.19778 0.19751 0.19750 
09000 013000 0.13409 013394 0.13393 
0.9500 006583 OQ6818 005813 OQ6813 
1GOOO 0 0 0 0 

1 2 3 4 
Exact 

5 
__ ~~_ _I 

1.0 1.0 
096474 0.96474 
092823 0.92823 
@a9043 0.89043 
0.85130 0.85130 
0.8 1079 0.8 1079 
076886 076886 
072544 0.72544 
068049 0.68049 
0.63396 0.63396 
0.58579 0.58579 
0.53591 0.53591 
0.48428 0.48428 
0.43083 0.43083 
037550 @37550 
0.31821 0.31821 
0.25890 025890 
@19750 0.19750 
013393 0.13393 
@06813 0.06813 
0 0 

by solving the system of algebraic equations 

which results from setting Li, = 0 in equation 

(19). The approximate steady state concentra- 

tion profiles for a0 = 1 are compared with the 

exact profiles in Table 1. The approximate 

profile is identical to the exact for orders of 

approximation N 2 4. Essentially, the same 

conclusion is valid for other values of ao. 

As a consequence of examining the behavior 

of the limiting conditions, it is clear that 

initially there is some error in the approximate 

solution but that this error vanishes as z 
becomes large (for sufliciently high orders of 
approximation). The exactness of the approxi- 
mate solutions for intermediate values of z 
can be determined for the special case a0 = 0. 
The exactness of the approximate solutions 
when a0 # 0 can only be inferred from the 
results for a0 = 0. The percent differences 
between the exact and approximate solutions 
C(G - u)/u,J *lOOforthecaseao = 0,N = 5 
and q = @l, 0.5 and 09 are tabulated in Table 2. 

Table 2. Percent diflerences for fifth order solution with 
a, = 0 

7 

0.02 
004 
0.06 
0.08 
0.10 
012 
014 
016 
018 
@20 
025 
050 
075 
1.00 
1.25 

Percent difference, [(uN - u)/u,_J 100 

q = 01 tj = 05 v=O-9 

140302 3.80826 - 0.27607 
0.42074 I ,20893 +014632 
0.26117 O-683 I 5 0.13964 
0.18833 0.51090 012533 
014334 O,J1134 0.11081 
0.11225 0.33636 0.09569 
0.08944 0.27590 008111 
0.07206 0.22645 006792 
0.05847 0~18588 004739 
CO4766 0. I5258 
002887 OX@315 002871 
oGO244 0+0790 000244 
0.00021 oGOO67 oil0021 
OGOOO2 O+MOO6 0@0002 
OGOOOO OMXlO 

The differences are greatest for small values of 

z and decrease to zero as 5 becomes large. The 

percent differences given in Table 2 indicate 

the errors which might be expected for any 
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particular intermediate value of r. The maximum mate solutions for nonzero values of ctO are 
error is less than 4 per cent and the error is similar to those for a0 = 0. The concentration 
less than 1 per cent for z 3 096. profiles as a function of order of approximation 

The convergence of the limiting conditions for r = 0*06 and a, = 1 are presented in 
of the approximate solutions was shown to be Fig. 4b. Again, only the curves for the first 
of a uniform nature. The convergence of the 
approximate solutions for intermediate values 
of r can be inferred by examining the properties 
of these solutions as a function of order of 
approximation for some fixed value of r. The S 
per cent differences for r = 01 and a0 = 0 are $ 
given in Fig. 3. The approximate solutions $ 
clearly converge toward the exact solutions. F 

B 

_o.51 d 
2 3 4 5 6 7 8 f 

ORDER OF APPROXIMATION, A’ 5 

FIG. 3. Percent differences as a function of order of approxi- E 
mation. B ” 

The concentration profiles as a function of 
order of approximation for T = OW and a0 = 0 

are presented in Fig 4a. Only the curves for 
the first three orders and the filth order are 
plotted in the figure. The fourth-order curve 

0 
0 0.2 04 0.6 0.8 

NORMAL DISTANCE,, 

(b)a, = 1.0 

falls about a point above the fifth-order curve FIG. 4. Concentration profiles as a function of order of 

and the sixth through eighth order solutions approximation. 

are between the tifth order curve and the exact three orders and the fifth or&r are presented. 
solution. The results for each successive order The fourth-order solution is about a point 
of approximation are closer to the exact than above the f&h order curve. The sixth and 
previous orders of approximation. The approxi- seventh order solutions are a point or so below 

0 0.2 04 @6 0.8 I.0 

NORMAL DISTANCE., 

(a) a, = 0 

ao= I 
T =0*06 

0.8 - 
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the fifth-order curve. One characteristic noted 
for solutions with nonzero a0 is apparent in 
Fig. 4b. For a small range of u near q = 0 the 
first-order solution is more exact than the 
second. However, in an overall sense, the second 
order solution is more exact than the first. 
This characteristic was only observed for values 
of z < 0.1. 

An important facet of any approximate 
method is the determination of a particular 
order of approximation which is a good 
compromise between the requirements for 
accuracy and computational feasibility. For 
this problem the increase in accuracy in going 
to values of N > 5 does not seem to be justified 
in view of the increased computation time 
necessary to do so. For instance, the results 
presented in Fig. 3 for the fifth order of approxi- 
mation are less than 05 per cent in error and 
those for the eighth order are less than 0.2 
per cent in error. However, the computation 
time for the fifth order is about 25 s whereas 
that for the eighth order is over 250 s (duration 
in execution on IBM 7094). Consequently, 
in the following section results for the fifth 
order of approximation are presented. 

5. PRESENTATION AND DISCUSSION 

OF RESULTS 

In the previous section, we have presented 
the approximate solution technique and estab- 
lished the convergence and exactness properties 
of the approximate solutions. In this section, 
the physical aspects of these solutions are 
analyzed. The phenomena which we are con- 
sidering is diffusion controlled evaporation 
across a finite region. A liquid A evaporates 
into a region originally filled entirely with gas B. 
The creation of the interface between the liquid 
and gas at time zero produces a concentration 
gradient which causes a diffusion of vapor 
and a counter diffusion of gas. Bulk motion of 
the vapor and gas also occurs because of the 
displacement effect necessary to maintain con- 
stant pressure. Fluxes result from the diffusion 
and bulk motion. A flux at one instant of time 

causes a modified concentration distribution 
at a later instant which in turn gives rise to a 
new flux. This transient process continues until 
a steady state is reached. In the steady state, 
the flux of vapor is constant across the region 
and that of the gas is zero. The concentration, 
concentration gradient and flux are probably 
the most important quantities for an under- 
standing of this phenomena. In the next para- 
graph we will establish the equations necessary 
to evaluate these quantities as a function of 
time and location. 

The equation for the rate of flow, or flux, of 
vapor is given by [I] . 

Thus, the flux of vapor is dependent on the 
flux of gas V, as well as the mole fractions 
X, and X,. Maintenance of constant pressure 
in the system requires a constant upward rate 
of flow of vapor and gas together. That is, the 
sum of the two fluxes across any plane must 
equal the rate of vapor formation at v = 0 

v,+ v,= v-Ao= -(l+ao)~ 
alt o 

(26) 

since the flux of gas is zero at the interface and 
X, + XB = 1. The governing partial differential 
equation (6) is obtained by combining equations 
(25) and (26) with the conservation of vapor 
equation 

at4 av, --. 
aZ= all (27) 

Integration of the governing equation yields 
the concentration distribution ~(7, q). This 
expression can be differentiated to give the 
concentration gradient au,/i?~. An expression 
for the flux of vapor, V,, is obtained by sub- 
stituting equation (26) into equation (25). These 
quantities are for the vapor, however, corres- 
ponding expressions for the gas can be generated. 
The interface parameter a0 appears in the 
above equations and is directly related to the 
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equilibrium gas-phase concentration. The values 
of the interface parameter considered in this 
study are summarized in Table 3. 

We will first examine the transient behavior 
of the approximate solutions for a particular 

Table 3. Values of interface parameters 

% 0 f 1 3 9 

X 110 0 t f a 23 

0.6 

NORMAL MSTANCE,q 

(a) Concentration 

0’4 - 

0 02 D+4 08 08 I.0 

NORMAL DISTANCE, , 

(b) Concentration gradient 

2.4 

i-6 

0.8 

0 v.2 O-4 06 0e I-0 

NORMAL D1STANCE.r) 

(c) Flux 

FIG. 5. Transient behavior of approximation solution for 
a, = 1.0. 

value of a0 and then indicate the effect of the 
interface parameter. The concentration, con- 
centration gradient and flux as a function of 
time for a, = 10 are given in Fig. 5. Initially, 
the concentration is zero for all q except q q 0 
where it is one. The concentration profiles 
develop rapidly toward the steady state profile. 
By the time z = O-25 the concentration distribu- 
tion is close to the steady state. However, the 
approach is asymptotic in nature and it is 
not until z = T = l-18194 that steady state is 
reached. At time zero the concentration gradient 
and flux are zero for all q except q = 0 where 
they are infinite. These quantities develop as 
rapidly as the concentration profiles. In the 
steady state, the flux becomes constant across 
the region. The solutions for all values of a0 
evidence a behavior similar to that shown 
above for a0 = 1.0, In the next paragraph, we 
will note the influence of the interface parameter 
on the solutions. 

In Section 4, we observed that the initial 
condition is the same for all values of a,. 
Consequently, the influence of the interface 
parameter on the approximate solutions is 

SD 
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indicated by the steady state profiles which are 
presented in Fig. 6. As the interface parameter 
increases, the concentration profiles become 
fuller indicating a greater displacement of gas ; 
the slope of the con~ntration gradient increases ; 
and the steady state flux value increases. The 
interface parameter also influences the rate at 

0 i?2 0.4 @6 Og I.0 

NORMAL DISTANCE, 9 

(a) Concentration 

NORMAL DISTANCE, 9f 

(b) Concentration gradient 

FIG. 6. Approximate solutions for steady state. 

which the steady state is approached. The 
vaporization rate as a function of time is given 
in Fig. 7, The steady state is approached more 
rapidly for larger values of M@ Furthermore, 
the onset of steady state time, T, decreases 
sharply as cl0 increases. 

0 

l/3 
1’0 

3’0 
9’0 

l’J2178 

1’38527 
1’teW 

0.88732 
0’5e452 

FIG. 7. Va~r~zation rate. 

As a concluding point, let us consider the 
flux of vapor and the flux of gas once more. 
Expressions for these fluxes are derived from 
equations (25) and (26) and can be written 

Jf = - ga au au 
A I Oaq,-zf 

v, = - [(l + a(J - a,uJ~ I at4 (28) 

atl 0 +q 

The fluxes are composed of a bulk motion term 
and a diffusion term. For the vapor these 
terms are additive. However, for the gas the 
diffusion opposes the bulk motion. The com- 
ponents of the fluxes at q = 05 for czo = 1.0 are 
given in Fig. 8. While tbe total flux of gas 
becomes zero in the steady state, this does not 
mean that the gas is static. The component of 
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FIG. 8. Components of flux. 

the flux of gas due to diffusion is equal in 
magnitude but opposite in direction to the 
component due to the bulk motion. This 
illustrates the dynamic nature of the steady state 
process. The existence of a steady state for 
diffusion controlled evaporation across a finite 
region is a significant difference from the 
process in an infinite region which does not 
admit a steady state. 

6. CONCLUSION 

In conclusion, the generalized Galerkin- 
Kantorovich method has been applied to the 
transient diffusion controlled evaporation across 
a finite region. The convergence and exactness 
properties of the approximate solutions were 
established by comparison with available exact 
solutions. The approximate solutions tend to 
converge as the order of approximation is 
increased. The exactness of the approximate 
solutions increases with increasing time and for 
the fifth order is less than one per cent for 
r 2 0.06. The fifth order of approximation was 
suggested as the best compromise between the 
requirements for accuracy and computational 

feasibility. The physical aspects of the solutions 
were presented and discussed. The most signifi- 
cant difference from solutions for the infinite 
region is the occurrence of a steady state for the 
finite region process. 

The generalized Galerkin-Kantorovich 
method would appear to have many further 
applications in solving nonsimilar heat- and 
mass-transfer problems. 
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R&n&--Une solution approchte de I’evaporation transitoire a travers une region finie est presentee 
ici. On emploie une methode gentralide de Galerkin-Kantorovich pour obtenir les solutions approchtes. 
Les properidtes d’exactitude et de convergence des solutions approchees sont Ctablies en les comparant 
avec des solutions exactes dans deux cas sp&ciaux. 11 semble que les solutions approchees convergent vers 
les solutions exactes lorsqu’on augmente I’ordre d’approximation. De plus, des solutions precises sont 
obtenues avec un ordre d’approximation (le ciniquibme) realisable avec un calculateur. Les aspects 

physiques des solutions approchees sont present& et discutts. 

Zuaammenfaaanng-Es wird eine Naherungsliisung fur die instationare Verdampfung durch einen end- 
lichen Bereich gegeben. Eine verallgemeinerte Galerkin-Kontorovich Methode wird angewandt, urn die 
NSiherungsli5sung zu erhalten. Genauigkeit und Konvergenz der Nlherungslijsungen wnrden durch 
einen Vergleich mit den exakten Lijsungen zweier Spezialfahe gewlhrleistet. Die Niiherungslijsungen 
scheinen mit erh6hter Nlherungsordnung gegen den exakten Wert zu konvergieren. Ausserdem wurden 
genzue Lasungen erhalten fib eine rechnerisch vertretbare Nlherungsordnung (Wnfte Ordnung). Die 

physikalischen Gesichtspunkte der Ntiherungsliisungen wurden dargelegt und diskutiert. 

Antr~-B~a~~o~ cTaTbenpH~O~u~CRnpa6asHcenHoeperueHwe~~RC~~a~KcnapeH~~ 
B KepexonHoru peminre B KoneSHoK 06xaCTH. 0606~eHmL reTon rasepwHa-KanTopoBnra 
~c~o~beyeTcR~JIR.~o~y~eHK~KpK~K~eHHYXpe~eHK~.~o~HocTbKCXO~nMOCTb~pn6~~~eH- 
~~~pemeHw#onpe~en~eTc~cpaB~eHneaa cTos~~ataperueK~lK~u~nrr~~yx oco6~.1xcny~aen. 
OKaebIBaeTCR, 9TO npw6JIUXeHHbze peI.UeHSiR CTpeMRTCH K TOqHbtM IlO Mepe yBeJIHqeHH 
nOp~~Kaa~~pOKC~~a~~H.~OBO~bHOTOS~epeey~bTaTH~O~y~eH~B lIRTOM npu6nwmewm. 

~~KBO~JWCFI II 06cym~aroTcfI @iaweCKKe acneKTbl npn6naHteHKbtx perueHKti. 


