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Abstract—This paper presents an approximate solution of transient evaporation through a finite region.
A generalized Galerkin—-Kantorovich method is employed to obtain the approximate solutions. Exactness
and convergence properties of the approximate solutions are established by comparison with exact solutions
for two special cases. The approximate solutions appear to be converging to the exact as the order of
approximation is increased. Furthermore, accurate solutions are obtained for a computationally feasible
order of approximation (the fifth). The physical aspects of the approximate solutions are presented and

discussed.
NOMENCLATURE that is, earliest time for which
afx), undetermined coefficients in ap- afv) differ from g, by less than
proximating function uy; 10°¢;
c, molar density of solution; vV, nondimensionalized flux,
i, J, indices wusually ranging over 1, GL/X 4o¢D 45;
2,...,N; X(t,y), mole fraction;
L time; X 405 equilibrium gas-phase concentra-
u(t,n), nondimensionalized concentration tion;
of vapor, equation (5); Y(n), definite integral in system of integral
ux(t,n), approximating function for variable conditions, equation (20).
u(t, n), equation (17);
Uy, collocation points, equation (22); Greek symbols
Upnaxs maximum value of u(zg,n) at a %o, interface parameter, equation (7);
particular instant of time t,; , nondimentionalized  coordinate
¥, coordinate normal to interface; normal to interface, equation (5);
D5, binary diffusivity for system 4-B; T, nondimensionalized time, equation
G, molar flux; (5).
H, set of weighting functions;
L, reference distance ; Subscripts
N, number of unknown coefficients in s, variable evaluated for the steady
the approximating function uy(t, ); state;
Ry, residual, equation (18); A, variable evaluated for vapor 4;
T, value of T at onset of steady state, B, variable evaluated for gas B.
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1. INTRODUCTION

THE TRANSIENT evaporation of a liquid 4
through a semi-infinite region filled with gas B
was solved by Arnold [1] by a similarity
transformation which reduced the governing
partial differential equation to an ordinary
differential equation. The problem considered
in this paper is the transient evaporation of a
liquid 4 through a finite region filled with gas B.
Thus, in this problem the concentration of A
is maintained as zero at some finite distance,
L, above the surface of liquid 4. For times
t <0, liquid A4 is not exposed to gas B. At the
instant of time t = 0, the interface between
liquid A and gas B is established. The concentra-
tion of A at the interface y =0 is then X ,,.
the equilibrium gas-phase concentration. The
physical model is shown schematically in Fig. 1.
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F1G. 1. Transient evaporation across a finite region.

The level of the liquid A is maintained at
position y = 0 at all times. The entire system
is maintained at a constant temperature and
pressure. The vapor A and gas B are assumed to
form an ideal gas mixture. It is further assumed
that B is insoluble in A. The governing equation
for this evaporation process under these assump-
tions is as follows [2]:

0X 4 -D °X, D, 0X, X 4 )
at o ABaz I_XAO ay y=0 ay
where

X,, mole fraction of vapor 4;
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normal distance above liquid 4 ;

t, time;

D,p, binary diffusivity for system A-B,
taken as a constant;

X 40, equilibrium gas-phase concentration.

The boundary conditions are

y=0 X=Xy V)]
y=1L 4a=0 (3)

and the initial condition is
t=20 X,=0. )

It is convenient to rewrite the above problem
in terms of the nondimensional variables

X4 y tD 5

u=—>= =7 o

and 1=
X0

5

The governing differential equation written in
nondimensional form is given by

ou  u dul oOu
& Ol ©
where
T :Y ‘;Ao. (7
The boundary conditions are
n=0 u=1 ®
n=1 u=20 9)
and the initial condition is
t=0 u=0. (10)

For the case a, = 0, equation (6) reduces to
the diffusion equation and the resulting problem
can be readily solved [3, 4]. Also, the steady
state solution of (6) can be obtained for all
values of a,. The purpose of this paper is to
present approximate unsteady state solutions
for nonzero values of a, The solutions are
obtained with a generalized Galerkin—Kan-
torovich method which is outlined in the next
section.
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2. THE GENERALIZED
GALERKIN-KANTOROVICH METHOD

The generalized Galerkin—Kantorovich
method can be briefly summarized as follows
[5, 6, 7). Let the given partial differential
equation be denoted in operator notation as
FIWM({, &)] = 0 with suitable boundary condi-
tions on w({, ). An approximate solution is
taken in the form

N
WG, &) % il &) = 6olc. &) + Y. afD 940D
(1)

where ¢q((, &) satisfies the nonhomogeneous
boundary conditions and the functions ¢{C, &)
satisfy homogeneous boundary conditions for
all values of the parameters a{(). Further, the
functions @, &) are taken to be the first N
members of a complete set of functions, thus,
in the limit of large values of N, it is possible
to find coefficients a; such that the approximat-
ing function wy((, &) is equal to the function
w((, &). For finite values of N, F[wp(, &)] =
Ry # 0 where Ry is called the residual and in
some sense reflects the degree of closeness of
wy to w.

A system of integral conditions for the
determination of the coefficients a; is generated
by requiring that the residual be orthogonal
to a set of weighting functions

2 &2
j HAQ Ryt = | H(E) Flon, 81d€ = 0 (12)

i=12...,N.

The weighting functions H({) are taken as
any set of linearly independent functions. The
set of N linearly independent integral conditions
represented by equation (12) will be ordinary
differential equations for the af{)’s and will be
nonlinear when the operator F[w((, )] is
nonlinear,

3. FORMULATION OF THE APPROXIMATE
SOLUTION

In this section, an Nth order solution will be
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formulated in the spirit of the formulations of
[8]. The approximating function of the form
(11) for the dependent variable u(t,n) can be
derived by writing

M

() = 3. b~ (13)

i=

and requiring that this function satisfy the

boundary conditions for all values of the b;’s.
Satisfaction of (8) gives

by=1 (14)
and satisfaction of (9) yields
M
b,=—-({1+ -23 bj. (15)
j=

Combining equations (14) and (15) with equation
(13) gives

M
ult,m)=1—-n+ .;3 bl{—n+ 7] (16)

The approximating function u,, can now be
rewritten in the form (11) by adjusting the
upper limit of the summation so that it reflects
the number of remaining unknown functions,
M — 2, which will be called N.

N
udt,m=1-1n+ j;l aft)[—n + 711 (17)

Equation (17) identicalily satisfies the boundary
conditions (8) and (9) irrespective of the values
of the a;s.

If the approximating function (17) is employed
in the governing equation (6), the expression for
the residual Ry is found to be

z

RN='

J

N
 al—n+ 2] - 2 afi + DG’

N
+ aoll + Y 4]
i=1
N
x[-1+ ¥ af—1+(G+ Dri}]
ji=1
where d; = da;/dt. When the residual is sub-
stituted into the orthogonality relation (12)
and the set of weighting functions taken as

(18)
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H{n) = n'~1, the system of N integral conditions
becomes

i al-Yi+ 1)+ Yi+j+ 1]
i=1

=£ aj + 1yYG+i—1)—oa[1 +

N
a;]
=1

* [—-Y() + _i a{-Y@D)+ G+ DY(G+ )}

(19)

i=1.2,...,N

where

1
Y(n) = gx"‘l dx = 1/n. (20)
This system of equations determines the N
unknowns aft)j = 1,2,..., N. However, before
this system of equations can be solved for the
transient concentration profiles uy(z, ), initial
values of the a;’s must be determined.

Initial values of the a;’s are determined by
requiring that the approximating function
upn(t, n) satisfy the initial condition u(0,n) = 0.
In terms of the approximating function this
condition requires that

N
uO,m) =1 -n+ 3 af0[~n+n""]1=0
@y

where the a{0)’s are the initial values of the a;’s.
For a finite number of af0)’s it is not possible
to identically satisfy equation (21). For example,
in the first order of approximation there is
available only one coefficient a,(0). However,
from equation (21) one finds

n—1

(=n+1n%

and since a,(0) is a constant it is only possible
to satisfy (21) at a single point. Hence, the initial
condition can only be satisfied in an approximate
manner. The initial values of the coefficients
can be determined by requiring that uy(0,7)
be orthogonal to the weighting functions H(n)

a,(0) =
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as was done with the residual. However, a
collocation procedure was found to give more
exact initial conditions. The scheme employed
to generate the initial values of the coefficients
is to require that equation (21) be satisfied at
the points u, = k/(N + 1), k = 1,2,...,N. The
resulting system of equations is given by

N
YaO[-m+n]=n-1

j=1

(22)

This system of N algebraic equations can be
solved for the N values a{0).

We now have all the elements necessary to
obtain the approximate solution. The solution
procedure is to specify a desired value of a,
and N and then to first obtain the initial values
of the a;’s from equation (22). With these initial
conditions the system of ordinary differential
equations (19) can be solved by any standard
finite difference method (a variable-step Adams—
Moulton scheme was employed in this study).
Once the afr) values are known at some
particular instant of time the concentration
profiles can be recovered from the equation
for up(t, n7), equation (17).

The above formulation illustrates the coupled
use of orthogonality and collocation methods.
These methods are but two of a number of
error distribution principles which can be used
to obtain approximate solutions of differential
equations [ 7]. The method of weighted residuals
encompasses and unifies consideration of the
above methods. Crandall [9] originated this
unifying concept and a comprehensive review
of it is given by Finlayson and Scriven [10].

4. EXACTNESS AND CONVERGENCE

The convergence of the generalized Galerkin—
Kantorovich method when applied to the
transient evaporation problem would be antici-
pated since the completeness of the set of
functions ¢; can be inferred from the Weier-
strass Approximation Theorem. The Weierstrass
Approximation Theorem states:

If the function »(x, y), dv/0x and Ov/dy are
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continuous in a closed and bounded region D,
then for any ¢ > O there exists a polynomial
p(x, y) such that in D, v — p < ¢, (dv/dx) —
(Op/0x) < € and (9v/dy) — (Op/dy) < € [11].

From the statement of the problem, equations
(6) through (10), it is clear that for ¢ > O the
dependent variable u and its derivative du/on
are continuous in the closed and bounded
region 0 < n < 1. Thus, the dependence of u
upon 1 can be approximated to any desired
degree of accuracy by a sum of polynomials in
n. That is, the approximating function is
mathematically complete and it is possible to
find coefficients b; such that
Itll—?:o up(t, n) = ult, n).

The author is not aware of a general proof of
the convergence of the generalized Galerkin—
Kantorovich method which would apply to
this problem. Consequently, the convergence
and exactness properties of the approximate
solutions can only be inferred by comparing
these results with available exact solutions.

For the transient evaporation problem there
are two special cases for which exact solutions
exist. The first, and most useful, is for o = 0.
In this case, equation (6) reduces to the diffusion
equation and the exact solution has been
obtained by classical techniques [3, 4]. The
exact solution is given by

unm=1-n

20
- Z . sin (nnn) exp (—n?n?1) (23)
n=1

and can be evaluated to any desired degree of
accuracy. The second case is the steady state.
For the steady state 0u/dt = 0 and equation
(6) reduces to an ordinary differential equation
which can be exactly integrated for all values
of ag
0%=0 umM=1-n

24

1
u:(n) =1-—

oy #0 "
0
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x (exp {[In (%o + Dn} — 1.

The degree to which the approximating function
satisfies the initial conditions also affects the
exactness of the approximate solutions.

To establish the convergence and exactness
properties of the approximate solutions, we will
first consider the limiting conditions, that is,
the initial conditions and steady state solutions.
The initial conditions are obtained from equa-
tion (22) and for a particular order of approxima-
tion are the same for all values of o, The
initial conditions for the first eight orders of
approximation are presented in Fig. 2. The

T T T T T T T T

oG sEN— D

CONCENTRATION, 4, (0,7)

NORMAL DISTANCE , 4

Fi1G. 2. Initial concentration profiles.

approximate initial conditions tend uniformly
toward the exact initial condition with increasing
N. However, the initial conditions are con-
siderably in error for small values of  due to
the nature of the initial condition, u(0,n) = 0,
and boundary condition at n = 0, u(7,0) = 1.
This error is rapidly diminished as the solution
proceeds in time as shall be seen subsequently.
The steady state solutions of the generalized
Galerkin—Kantorovich method are obtained
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Table 1. Steady state solutions for ag = 10

Nondimensional concentration, uy(z,, #)

n Order of approximation, N
- Exact
1 2 3 4 5

0 1-0 10 10 10 10 10
0-0500 096583 096475 096473 096474 096474 096474
(1000 093000 092832 092822 092823 092823 092823
01500 0-89250 0-89063 0-89042 0-89043 089043 0-89043
02000 0-85333 0-85162 0-85129 0-85130 0-85130 0-85130
0-2500 0-81250 0-81125 081077 0-81079 0-81079 0-81079
0-3000 077000 0-76944 0-76884 0-76886 0-76886 0-76886
0-3500 0-72583 072614 072542 0-72544 072544 0-72544
0-4000 0-68000 068128 0-68048 0-68049 0-68049 0-68049
0-4500 063250 0-63481 063395 063396 063396 0-63396
0-5000 0-58333 0-58667 0-58578 0-58579 0-58579 0-58579
0-5500 0-53250 0-53680 053592 0-53591 0-53591 0-53591
0-6000 0-48000 0-48513 0-48429 0-48428 048428 0-48428
0-6500 042583 0-43160 043084 0-43083 043083 0-43083
0-7000 0-37000 037617 0-37551 0-37550 0-37550 0-37550
0-7500 0-31250 0-31876 031822 0-31821 0-31821 031821
0-8000 025333 025932 0-25891 025890 025890 0-25890
0-8500 0-19250 019778 0-19751 0-19750 0-19750 0-19750
09000 0-13000 0-13409 0-13394 013393 013393 0-13393
09500 006583 006818 0-06813 006813 006813 0-06813
1-0000 0 0 0 0 0 0

by solving the system of algebraic equations
which results from setting d; = 0 in equation
(19). The approximate steady state concentra-
tion profiles for a, = 1 are compared with the
exact profiles in Table 1. The approximate
profile is identical to the exact for orders of
approximation N > 4. Essentially, the same
conclusion is valid for other values of a,,.

As a consequence of examining the behavior
of the limiting conditions, it is clear that
initially there is some error in the approximate
solution but that this error vanishes as 7t
becomes large (for sufficiently high orders of
approximation). The exactness of the approxi-
mate solutions for intermediate values of 7
can be determined for the special case ay = 0.
The exactness of the approximate solutions
when a # 0 can only be inferred from the
results for oy, = 0. The percent differences
between the exact and approximate solutions
[(uy — u)/ttas] *100 for the case g = O, N = 5
and 7 = 0-1, 05 and 09 are tabulated in Table 2.

Table 2. Percent differences for fifth order solution with
ag =0
Percent difference. [(uy — t)/tige,] 100
" - S,
n =01 n =05 n =09
0-02 1-40302 380826 —0-27607
0-04 042074 1-20893 +0-14632
006 026117 0-68315 0-13964
0-08 0-18833 0-51090 0-12533
010 0-14334 041134 011081
012 011225 0-33636 009569
014 0-08944 0-27590 0-08111
016 0-07206 0-22645 0-06792
018 0-05847 0-18588 0-04739
0-20 004766 015258 0-04666
0-25 0-02887 0-09315 0-02871
0-50 0-00244 0-00790 000244
075 000021 0-00067 0-00021
1-00 0-00002 0-00006 0-00002
1-25 0-00000 0-00000 0-00000

The differences are greatest for small values of
T and decrease to zero as T becomes large. The
percent differences given in Table 2 indicate
the errors which might be expected for any
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particular intermediate value of . The maximum
error is less than 4 per cent and the error is
less than 1 per cent for 7 > 0-06.

The convergence of the limiting conditions
of the approximate solutions was shown to be
of a uniform nature. The convergence of the
approximate solutions for intermediate values
of 7 can be inferred by examining the properties
of these solutions as a function of order of

approximation for some fixed value of 7. The
per cent differences for t = 0-1 and «, = O are
given in Fig. 3. The approximate solutions
clearly converge toward the exact solutions.
90 k ¥ ¥ L) T T T
N\
N\
70 AN 7201 a,%0 i
1 n
Y —— ot
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50+ \ -1
\ —-—09
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(o]
y — 1 a4 1 —1 4
05l 2 3 4 5 6 7 8

ORDER OF APPROXIMATION, ~

FIG. 3. Percent differences as a function of order of approxi-
mation.

The concentration profiles as a function of
order of approximation for t = 0-06 and a, = 0
are presented in Fig. 4a. Only the curves for
the first three orders and the fifth order are
plotted in the figure. The fourth-order curve
falls about a point above the fifth-order curve
and the sixth through eighth order solutions
are between the fifth order curve and the exact
solution. The results for each successive order
of approximation are closer to the exact than
previous orders of approximation. The approxi-
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mate solutions for nonzero values of «, are
similar to those for a, = 0. The concentration
profiles as a function of order of approximation
for t=006 and ay =1 are presented in
Fig. 4b. Again, only the curves for the first

0 T T T T T T T T T
o qo=0 —
T =006
o8 ﬂ
® L w ]
<+ 2
2 3
3
z 06 - Exact b
Q
- = —
.
Z oat .
8
z L _
<]
(3]
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0 1 1 1 1 L 1
0 02 04 06 08 1-0
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(@)ag =0
10 T T T T T T —_T T
a=|
T'=0-06 W
[o} ] r b
€ i
<
$ i J
= 06
) N
= \ g
: L s
z 04 * .
I
2
3 I '
ozl ]
0 R
(o} 02 04 06 o8 10
NORMAL DISTANCE,n
(byay, =1-0
F1G. 4. Concentration profiles as a function of order of
approximation.

three orders and the fifth order are presented.
The fourth-order solution is about a point
above the fifth order curve. The sixth and
seventh order solutions are a point or so below
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the fifth-order curve. One characteristic noted
for solutions with nonzero a, is apparent in
Fig. 4b. For a small range of n near n = 0 the
first-order solution is more exact than the
second. However, in an overall sense, the second
order solution is more exact than the first.
This characteristic was only observed for values
of t < O1.

An important facet of any approximate
method is the determination of a particular
order of approximation which is a good
compromise between the requirements for
accuracy and computational feasibility. For
this problem the increase in accuracy in going
to values of N > 5 does not seem to be justified
in view of the increased computation time
necessary to do so. For instance, the results
presented in Fig. 3 for the fifth order of approxi-
mation are less than 0-5 per cent in error and
those for the eighth order are less than 0-2
per cent in error. However, the computation
time for the fifth order is about 25 s whereas
that for the eighth order is over 250 s (duration
in execution on IBM 7094). Consequently,
in the following section results for the fifth
order of approximation are presented.

5. PRESENTATION AND DISCUSSION
OF RESULTS

In the previous section, we have presented
the approximate solution technique and estab-
lished the convergence and exactness properties
of the approximate solutions. In this section,
the physical aspects of these solutions are
analyzed. The phenomena which we are con-
sidering is diffusion controlled evaporation
across a finite region. A liquid 4 evaporates
into a region originally filled entirely with gas B.
The creation of the interface between the liquid
and gas at time zero produces a concentration
gradient which causes a diffusion of vapor
and a counter diffusion of gas. Bulk motion of
the vapor and gas also occurs because of the
displacement effect necessary to maintain con-
stant pressure. Fluxes result from the diffusion
and bulk motion. A flux at one instant of time
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causes a modified concentration distribution
at a later instant which in turn gives rise to a
new flux. This transient process continues until
a steady state is reached. In the steady state,
the flux of vapor is constant across the region
and that of the gas is zero. The concentration,
concentration gradient and flux are probably
the most important quantities for an under-
standing of this phenomena. In the next para-
graph we will establish the equations necessary
to evaluate these quantities as a function of
time and location.

The equation for the rate of flow, or flux, of
vapor is given by [1] |

du
on
Thus, the flux of vapor is dependent on the
flux of gas V5 as well as the mole fractions
X, and X Maintenance of constant pressure
in the system requires a constant upward rate
of flow of vapor and gas together. That is, the
sum of the two fluxes across any plane must
equal the rate of vapor formation at # = 0

XpVa— X4Vp=— (25)

du
VA + VB = VAO - - (1 + aO)EI- (26)

0
since the flux of gas is zero at the interface and
X, + X = 1. The governing partial differential
equation (6) is obtained by combining equations
(25) and (26) with the conservation of vapor
equation

ou 0V,

o
Integration of the governing equation yields
the concentration distribution wuy{t,#n). This
expression can be differentiated to give the
concentration gradient Juy/0n. An expression
for the flux of vapor, V,, is obtained by sub-
stituting equation (26) into equation (25). These
quantities are for the vapor, however, corres-
ponding expressions for the gas can be generated.
The interface parameter o, appears in the
above equations and is directly related to the

@7
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equilibrium gas-phase concentration. The values
of the interface parameter considered in this
study are summarized in Table 3.

We will first examine the transient behavior
of the approximate solutions for a particular

Table 3. Values of interface parameters
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Fi1G. 5. Transient behavior of approximation solution for
ay = 1-0

value of a, and then indicate the effect of the
interface parameter. The concentration, con-
centration gradient and flux as a function of
time for a, = 10 are given in Fig. 5. Initially,
the concentration is zero for all  except n = 0
where it is one. The concentration profiles
develop rapidly toward the steady state profile.
By the time t = 0-25 the concentration distribu-
tion is close to the steady state. However, the
approach is asymptotic in nature and it is
not until T = T = 1-18194 that steady state is
reached. At time zero the concentration gradient
and flux are zero for all n except n = 0 where
they are infinite. These quantities develop as
rapidly as the concentration profiles. In the
steady state, the flux becomes constant across
the region. The solutions for all values of a,
evidence a behavior similar to that shown
above for ay = 1-0, In the next paragraph, we
will note the influence of the interface parameter
on the solutions.

In Section 4, we observed that the initial
condition is the same for all values of w,.
Consequently, the influence of the interface
parameter on the approximate solutions is
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indicated by the steady state profiles which are
presented in Fig 6. As the interface parameter
increases, the concentration profiles become
fuller indicating a greater displacement of gas;
the slope of the concentration gradient increases;
and the steady state flux value increases. The
interface parameter also influences the rate at

o YUY T Ty T T YT T T
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CONCENTRATION, 4, (ry)
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o
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e d H
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3.0 1-84839
90 2-55843
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o8 o

o€

NORMAL DISTANCE, »
(b) Concentration gradient

Fi1G. 6. Approximate solutions for steady state.
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which the steady state is approached. The
vaporization rate as a function of time is given
in Fig. 7. The steady state is approached more
rapidly for larger values of «y Furthermore,
the onset of steady state time, 7, decreases
sharply as o, increases.
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[ 152178
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FiG. 7. Vaporization rate.

As a concluding point, let us consider the
flux of vapor and the flux of gas once more.
Expressions for these fluxes are derived from
equations (25) and (26) and can be written

Jdu ou
Vam o~
28)
ou ou (
Ve = — - u L
B [(1 + ap) — apu] anl, + o

The fluxes are composed of a bulk motion term
and a diffusion term. For the vapor these
terms are additive. However, for the gas the
diffusion opposes the bulk motion. The com-
ponents of the fluxes at # = 05 for &, = 10 are
given in Fig. 8 While the total flux of gas
becomes zero in the steady state, this does not
mean that the gas is static. The component of
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4:0 T T T

Flux of vapour -
-——-~ Flux of gas
n=05
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the flux of gas due to diffusion is equal in
magnitude but opposite in direction to the
component due to the bulk motion. This
illustrates the dynamic nature of the steady state
process. The existence of a steady state for
diffusion controlled evaporation across a finite
region is a significant difference from the
process in an infinite region which does not
admit a steady state.

6. CONCLUSION

In conclusion, the generalized Galerkin—
Kantorovich method has been applied to the
transient diffusion controlled evaporation across
a finite region. The convergence and exactness
properties of the approximate solutions were
established by comparison with available exact
solutions. The approximate solutions tend to
converge as the order of approximation is
increased. The exactness of the approximate
solutions increases with increasing time and for
the fifth order is less than one per cent for
7 2 0-06. The fifth order of approximation was
suggested as the best compromise between the
requirements for accuracy and computational
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feasibility. The physical aspects of the solutions
were presented and discussed. The most signifi-
cant difference from solutions for the infinite
region is the occurrence of a steady state for the
finite region process.

The generalized Galerkin—Kantorovich
method would appear to have many further
applications in solving nonsimilar heat- and
mass-transfer problems.
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Résumé—Une solution approchée de I’évaporation transitoire & travers une région finie est présentée

ici. On emploie une méthode généralisée de Galerkin—~Kantorovich pour obtenir les solutions approchées.

Les properiétés d’exactitude et de convergence des solutions approchées sont établies en ies comparant

avec des solutions exactes dans deux cas spéciaux. Il semble que les solutions approchées convergent vers

les solutions exactes lorsqu’on augmente 'ordre d’approximation. De plus, des solutions précises sont

obtenues avec un ordre d’approximation (le ciniqui¢éme) réalisable avec un calculateur. Les aspects
physiques des solutions approchées sont présentés et discutés.

Zusammenfassung—FEs wird eine Ndherungslosung fiir die instationdre Verdampfung durch einen end-
lichen Bereich gegeben. Eine verallgemeinerte Galerkin—Kontorovich Methode wird angewandt, um die
Niherungslosung zu erhalten. Genauigkeit und Konvergenz der Niherungslosungen wurden durch
einen Vergleich mit den exakten Losungen zweier Spezialfille gewihrleistet. Die N#herungsldsungen
scheinen mit erhéhter Ndherungsordnung gegen den exakten Wert zu konvergieren. Ausserdem wurden
genzue Losungen erhalten fiir eine rechnerisch vertretbare Niherungsordnung (fiinfte Ordnung). Die
physikalischen Gesichtspunkte der Ndherungsiésungen wurden dargelegt und diskutiert.

Amporamas—B RanHolt cTaTHE DPUBOXUTCA NPUGIMKEHHOE PEIUeHNe IJIA CIydas MCIapeHHuA
B NEPEXOJHOM peKHMMe B KOHeuHOM obmactn. O6o6mennnit meron 'anepruna—Kanroposuya
ACNOJL3YeTCA JIA NOJNyYeHUA NPHIHKeHHEX petieHu. TOUHOCTE ¥ CXOAUMOCTD MPUGIAHEH-
HHX pelienuii onpegesAeTcA CPaBHEHHEM C TOYHHMU pelIeHUAMM JJIA ABYX 0COBHX CiIy4aes.
OKasuBaeTCA, YTO NPUGIMKEHHHE pelIeHAA CTPeMATCA K TOYHBIM HO Mepe YBeJHYeHA
MOPAJKA anNnpoHCHMALHMH. [[0BOILHO TOYHHE PeayJbTATH HOJYUYeHH B IATOM NPUOIHKEHNH.
IlpuBogarca u obcynaaTed puanyeckne acleKTH NPUOIHAHEHHHX peleHuH .



